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Abstract—Hetero-Diels–Alder reaction of 5-(propan-2-ylidene)-4-sulfanylidene-1,3-thiazolidin-2-one with 
N,N′-bis(methoxycarbonyl)-1,4-benzoquinone diimine in boiling toluene afforded 87% of dimethyl 9,9-di-
methyl-2-oxo-8a,9-dihydro-2H-thiochromeno[2,3-d][1,3]thiazole-5,8(3H,4aH)-diylidenedicarbamate. Analo-
gous reactions of 5-benzylidene-, 5-{[4-(dimethylamino)phenyl]methylidene}-, and 5-[(2-hydroxyphenyl)-
methylidene]-4-sulfanylidene-1,3-thiazolidin-2-ones led to the formation of the corresponding dimethyl 9-aryl-
2-oxo-3,9-dihydro-2H-thiochromeno[2,3-d][1,3]thiazole-5,8-diyldicarbamates in 64–82% yield. 

5-(Arylmethylidene)-4-sulfanylidene-1,3-thiazoli-
din-2-ones are known not only as highly reactive het-
erodienes [1] but also as compounds exhibiting anti-
tumor activity and affinity for such anticancer targets 
as PPARγ-receptors [2]; in addition, they inhibit Bcl-
XL/BH3 [3] and TNFα/TNFRc1 interactions [4] and 
cell growth via inhibition of translation initiation [5].  

Hetero-Diels–Alder reactions of 5-(arylmethyli-
dene)-1,3-thiazolidin-2-ones with acrolein, diethyl ace-
tylenedicarboxylate, norbornene, maleimides derived 
from amino acids, and norbornene-2,3-dicarboxylic 
acid imides lead to the formation of the corresponding 
fused heterocyclic compounds containing a thiazoli-
dine ring. 3,5a,6,11b-Tetrahydro-2H,5H-chromeno-
[4′,3′:4,5]thiopyrano[2,3-d][1,3]thiazol-2-ones were 
synthesized in 60–80% yield by the base-catalyzed 
Knoevenagel–hetero-Diels–Alder domino reaction of 
4-sulfanylidene-1,3-thiazolidin-2-one with 3,7-di-

methyloct-6-enal, 2-allyloxybenzaldehydes, and  
2-formylphenyl (E)-3-arylprop-2-enoates [6]. 5-(Aryl-
methylidene)-4-sulfanylidene-1,3-thiazolidin-2-ones 
reacted with 2 equiv of 1,4-naphthoquinone in acetic 
acid to give 11-aryl-3,5,10,11-tetrahydro-2H-benzo-
[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones 
[7]; in this reaction, 1 equiv of 1,4-naphthoquinone 
was consumed for the oxidation of initially formed 
aromatic adduct. 

The synthesis of new fused thiopyrano[2,3-d][1,3]-
thiazole derivatives mimicking structural fragments of 
5-ylidene-4-sulfanylidene-1,3-thiazolidin-2-ones 
seems to be an important line of research. 

N,N′-Bis(methoxycarbonyl)-1,4-benzoquinone di-
imine (1) [8, 9] reacted with 5-(propan-2-ylidene)-4-
sulfanylidene-1,3-thiazolidin-2-one (2) in boiling tol-
uene to give bis-carbamate 3 in 87% yield (Scheme 1). 
Unlike 1,4-naphthoquinone [7], hetero-Diels–Alder re-

DOI: 10.1134/S1070428017060197 

NCOOMe

NCOOMe

1

+
S

H
NS

Me

Me

O

2

PhMe, ∆

N

N

S

S

H
N

O

COOMe

COOMe
Me Me

3

Scheme 1. 



HETERO-DIELS–ALDER  REACTION  OF  5-YLIDENE-4-SULFANYLIDENE-... 

RUSSIAN  JOURNAL  OF  ORGANIC  CHEMISTRY   Vol.  53   No.  6   2017 

933 

Scheme 2. 
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action of 1 with thiazolidinone 2 in acetic acid cannot 
be accomplished since quinone diimine 1 is capable of 
reacting with the solvent. 

The IR spectrum of 3 contained an absorption band 
at 1640 cm–1 due to C=N stretching vibrations. The 
olefinic 6-H and 7-H protons resonated in the 1H NMR 
spectrum of 3 as doublets at δ 7.38 and 7.53 ppm, and 
the corresponding carbon signals were located at  
δC 124.69 and 129.78 ppm in the 13C NMR spectrum. 

No reduction product of quinone diimine 1, di-
methyl benzene-1,4-diylbiscarbamate [8], was detected 
in the reaction mixture. This indicates that compound 3 
is formed directly via [4 + 2]-cycloaddition rather than 
as a result of subsequent oxidation of aromatic adduct.  

Under analogous conditions, quinone diimine 1 
reacted with dienes 4–6 to give biscarbamates 7–9 in 
64–82% yield (Scheme 2). Compounds 7–9 are likely 
to be formed as racemates since a chiral center (C9) is 
generated during the reaction. Presumably, increased 
steric hindrances in the primary adducts are respon-
sible for their autoaromatization to compounds 7–9. 

The structure of 7–9 was confirmed by IR and  
1H NMR spectra, and 13C NMR spectrum was addi-
tionally recorded for compound 8. The IR spectra of  
7–9 lacked C=N stretching band at 1640 cm–1, but 
absorption bands in the region 1610–1570 cm–1 were 
observed due to stretching vibrations of aromatic C=C 
bonds; also, NH stretching bands were present in the 
regions 3225–3226 (N3–H) and 3360–3370 cm–1 (car-
bamate group). The 1H NMR spectra of 7–9 showed  
a one-proton singlet at δ 8.66–8.94 ppm and a two-
proton singlet at δ 9.54–9.58 ppm (CONH). Aromatic 
carbon nuclei of biscarbamate 8 resonated in the  
13C NMR spectrum at δC 116.45–147.02 ppm. 

EXPERIMENTAL 

The IR spectra were recorded on an InfraLUM FT-
02 spectrometer with Fourier transform from samples 
prepared as KBr disks. The 1H NMR spectra were  

r eco rded  on  a  Bruke r  DRX 500  in s t ru men t   
(500.13 MHz) using DMSO-d6 as solvent and tetra-
methylsilane as internal standard. The 13C NMR spec-
tra were measured with complete decoupling from pro-
tons on the same instrument at 126 MHz in DMSO-d6. 
The purity of the isolated compounds was checked by 
TLC on Silufol UV-254 plates using chloroform–
diethyl ether (1 : 2) or tetrahydrofuran–diethyl ether 
(1 : 1) as eluent; spots were developed by treatment 
with iodine vapor. Compounds 2–4 were synthesized 
according to the procedures described in [7, 10]. 

Dimethyl {9,9-dimethyl-2-oxo-8a,9-dihydro-2H-
thiochromeno[2,3-d][1,3]thiazole-5,8(3H,4aH)-di-
ylidene}biscarbamate (3). A mixture of 1.11 g  
(5 mmol) of compound 1 and 0.87 g (5 mmol) of het-
erodiene 2 in 10 mL of anhydrous toluene containing  
a small amount of hydroquinone was refluxed for 5 h. 
The mixture was cooled, the solvent was removed, and 
the residue was recrystallized from ethyl acetate–hex-
ane (1 : 1). Yield 1.7 g (87%), light yellow crystals,  
mp 95–97°C. IR spectrum, ν, cm–1: 3225 (NH), 1680, 
1650 (C=O), 1640 (C=N). 1H NMR spectrum, δ, ppm: 
1.32 s (3H, Me), 1.42 s (3H, Me), 3.01 s (6H, OMe), 
2.65 d (1H, CH, J = 9.0 Hz), 4.53 d (1H, CH, J =  
9.0 Hz), 7.38 d (1H, CH=, J = 10 Hz), 7.53 d (1H, 
CH=, J = 10 Hz), 8.26 br.s (1H, NH). 13C NMR spec-
trum, δC, ppm: 25.65 and 27.31 (Me), 37.45 (C9), 
39.28 (C4a),  48.39 (C8a),  53.58 (OMe), 122.48  
(C9a), 124.69 and 129.78 (C6, C7), 135.89 (C3a), 155.29 
and 155.87 (NC=O), 157.08 and 160.24 (C5, C8), 
171.26 (C2). Found, %: C 48.52; H 4.18; N 10.45. 
C16H17N3O5S2. Calculated, %: C 48.61; H 4.30;  
N 10.63. 

Compounds 7–9 were synthesized in a similar way. 

Dimethyl (2-oxo-9-phenyl-3,9-dihydro-2H-thio-
chromeno[2,3-d][1,3]thiazole-5,8-diyl)biscarbamate 
(7). Yield 0.71 g (64%), yellow crystals, mp 182– 
184°C (from EtOH). IR spectrum, ν, cm–1: 3370, 3226 
(NH), 1680, 1650 (C=O), 1620, 1610, 1575 (C=Carom). 
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1H NMR spectrum, δ, ppm: 3.71 s (6H, OMe), 5.65 s 
(1H, 9-H), 7.01 t (1H, Harom, J = 7.0 Hz), 7.28–7.40 m 
(4H, Harom), 7.47 d (1H, Harom, J = 8.6 Hz), 7.82 d  
(1H, Harom, J = 8.6 Hz), 8.94 br.s (1H, NH), 9.58 br.s 
(2H, NH). Found, %: C 53.97; H 3.80; N 9.27. 
C20H17N3O5S2. Calculated, %: C 54.18; H 3.84; N 9.48. 

Dimethyl {9-[4-(dimethylamino)phenyl]-2-oxo-
3,9-dihydro-2H-thiochromeno[2,3-d][1,3]thiazole-
5,8-diyl}biscarbamate (8). Yield 0.98 g (81%), dark 
violet crystals, mp 202–203°C (from EtOH). IR spec-
trum, ν, cm–1: 3360, 3226 (NH), 1675, 1650 (C=O), 
1625, 1610, 1575 (C=Carom). 1H NMR spectrum, δ, 
ppm: 2.43 s (6H, NMe2), 3.70 s (6H, OMe), 5.62 s 
(1H, 9-H), 7.03 d (1H, Harom, J = 8.9 Hz), 7.12 d (1H, 
Harom, J = 8.9 Hz), 7.48 d (1H, Harom, J = 8.7 Hz), 
7.73–7.80 m (3H, Harom), 8.66 br.s (1H, NH), 9.54 br.s 
(2H, NH). 13C NMR spectrum, δC, ppm: 31.52 (C9), 
40.58 (NMe2), 52.58 (OMe); 116.45, 119.25, 120.05, 
125.89, 132.56, 136.78, 136.92, 147.02 (Carom); 127.81 
(C9a), 139.56 (C3a), 153.12 and 156.39 (CO2Me), 
168.24 (C2). Found, %: C 54.08; H 4.48; N 11.31. 
C22H22N4O5S2. Calculated, %: C 54.32; H 4.53;  
N 11.52. 

Dimethyl {9-(2-hydroxyphenyl)-2-oxo-3,9-dihy-
dro-2H-thiochromeno[2,3-d][1,3]thiazole-5,8-diyl}-
biscarbamate (9). Yield 0.94 g (82%), light yellow 
crystals, mp 190–192°C (from EtOH). IR spectrum, ν, 
cm–1: 3580 (OH), 3365, 3225 (NH), 1680, 1650 
(C=O), 1615, 1570 (C=Carom). 1H NMR spectrum, δ, 
ppm: 3.71 s (6H, OMe), 5.74 s (1H, OH), 5.82 s (1H, 
9-H), 6.84–6.87 m (1H, Harom), 7.01–7.05 m (3H, 
Harom), 7.50 d (1H, Harom, J = 8.7 Hz), 7.81 d (1H, 
Harom, J = 8.7 Hz), 8.68 br.s (1H, NH), 9.56 s (2H, 
N H ) .  F o u n d ,  % :  C  5 2 . 0 5 ;  H  3 . 4 3 ;  N  8 . 9 4. 
C20H17N3O6S2. Calculated, %: C 52.29; H 3.70; N 9.15. 

This study was performed under financial support 
by the Ministry of Education and Science of the 
Russian Federation (project no. 115021010181). 
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